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Abstract

This paper present tl-convergence results and veak laus of large numbers
for Ll-nixingales. Using the approach of Hcleish (1975a), results on Li-
convergence are obtained without imposing the requirement used in Andrews (1988)
that the random variables in the sequence he uniformly integrable.

1. Introduction

McLeish (1975a, 1975b, 1977) defined a class of dependent
random variables called mixingales, and developed the
asymptotic theory for these dependent sequences. Mixingales
include broad classes of dependent processes such as
m-dependent sequences, mixing sequences and ARMA processes (in
Section 2 below). Applications of mixingales can be found in
Gallant (1987) and Gallant and White (1988).

McLeish (1975a) establishes SLLNS under the assumption
that the mixingale numbers sequence decays to 2zero at a
certain rate. Using a weaker moment assumption, Andrews
(1988) establishes WLLN without imposing a rate condition on
the mixingale number sequence. However, he imposes a uniform
integrability condition.
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In this paper, WLLNs for Ll-mixingales are established
without imposing the uniform integrability condition.
However, the infite sum of the mixingale numbers is assumed to
go to 0 as the number of observations increases. Our approach
is to use a variation of McLeish’s (1975) representation of
integrable random variables. It can be shown that Andrews’
(1988) results can be accomodated under this approach.

The rest of this paper is organized as follows. In
Section 2, the definition and examples of Ll-mixingales are
presented. In Section 3, WLLNs for Ll-mixingale are

established. Relationships between our results and previous
results, especially those of Andrews (1988) and Mcleish
(1975a), are given in Section 4. The proofs are given in
Section 5.

2. Ll-Mixingales

Let ( &, F, P) denote a probability space. Let (X;:i21)
be a sequence of random variables on ( Q@ , F, P). Let
{(Fj:i=...,0,1,...}) be any nondecreasing sequence of sub-o-
fields of F. Let E Xj; = E(Xj|F3) denote the conditional
expectation of X; give PFJ and 1ot W "p denote the LP(P) nornm,
i.es, |X;lp=(E|X;[F)1/

DEFINITION 1. The sequence (X;, F;) is an Lp-m1x1ngale
if there exist non-negatlve constants (cje i21) and ( Tm: m20)
such that for all i 2 1 and m > 0 we have

(a) “Ei-mxi"p < ¢y ¥y and
(b) Xy = Ejym Xillp S ©f ¥mta-

The term mixingale as originally defined in McLeish
(1975) is an Lz-mixingale in the context of this definition.
Andrews (1988), on the other hand, requires that ¥, -> 0 as
m — o in defining Ll -mixingale.

The following are examples of Ll-mixingales.

(1) A martingale difference array (X;, Fj:1 < i < n) is an
Ll-mixingale. Take Y, = 0 for m 2 1 cj = |xill, and set
Fi = {(o,Q}) for i <0 and Fy = F for 1 > n.

(2) An m-dependent sequence of random variables (Xj: i 2 1)
is an L‘-mixingale with Wk = 0 for k > m and c; = |[X;}; if
one takes F; = o(Xl,..., j) for 1 < i £ ng, Fj = {w, o) for
i <0, and F{ = F for i > n°
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(3) Suppose X; = X aj4€i-g for i 2 1, where

{€4,F3:-w<j<w) is a sequence of martingale difference
ingovgtion random variables and corresponding o-fields and
(aj4:=© < j <o, i 2 1) is a sequence of constants. If (€4)
are"LY¥ bounded for some r > 1, i.e., Elejlr < K < o, ahd
o0
T sup |aij| < o, then (x;, fj} is Ll-mixingale with
j=—0 i21

o0
cy = fﬁp l€xfly, for i 2 1 and ¥, = | jz sup aij"l'

=m

3. Weak Laws of Large Numbers

"Let (Xj) be an Ll-mixingale with «ssociated constants
{cij) and"{ Y,}. Let

n
(1) Sh = E X4

Throughout this paper we assume that EX; = 0.

The following proposition is useful in obtaining the
upper bound for the sum in (1) when the X;’s satisfy the
mixingale condition. The proposition is a variation of
McLeish’s 1975 result.

'PROPOSITION 1. Let (X;)} be any sequence of integrable
random variables, F, any nondecreasing sequence of o-
algebras such that  X; = X; - Ey Xj = 0 a.s. for all i.
Then the partial su S, in (1) has representation as an
infinite sum of integrable random variables:

(- +]

(2) Sh = % [Ypik + Znsk] * Upiy » Me I
k=M
where
n
(3) Ynik = ,21 [Ei+k Xi = Bjix-1 Xil
1=

n
(4) Znik = 21 [Ej-x Xi = BEj-k-1 Xjl
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M3

[Ej+m-1 Xi — Ej-m Xj]. -

(6) Un:M =
. 1

i

Proposition 1 goes a step beyond McLeish’s result by
decomposing the sum S, into more terms. . We obtain a finer
decomp051t10n to facilitate the bounding of the functlon of S,
in terms of VY,

Now we establish the upper bound for a function of |S,
This is the analog of the result in McLeish (1975a) on
E(max Snz)
j<n

THEOREM 1. Let (Xj, F;) be an integrable Ll-mixingale.
o]
If = VYx < o, then there exists a B depending on {Yn) such
=0 .
that

n
(7) (E max |Sj|) < B iE c; | -

j<n

In particular, B = 6 2 ¥ + (Yo + ¥1). .
k=M

To obtain h1s result on I?-m1x1ngales, McLeish assumes
that the sequence ( m) is eventually bounded and specifies the
rate at which it attains the upper bound. Theorem 1, on the
other hand, assumes the finiteness of B.

COROLLARY 1. Suppose the sequence (X;, Fj)- is an
n ©

integrable Ll-mixingale. If 1lim £ ¢y <o and % Wk < o,
n->0 i=1 k=M
then
n
(8) Ishl = | = Xj| converges in L;. -
i=1

CORROLARY 2. Suppose the sequence (X;, F;} is an
n
integrable Ll-mixingale. If lim = cj < » and
n->o i=1
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o0
(9) lim n~1 ¢ ¥y => 0 as n -> =,
n->o0 k=M
then
' n
(10) Eln"l s,| = Eln"l = Xx;|] ->0asn->o
i=1

and in consequence n~1 Sn —I> 0 as n -> o, Therefore,
' L

n 1 Sn —->p 0 as n =-> o,

We note that in his 1975a paper, McLeish provides an a.s
convergence result under a stronger moment assumption, namely
the boundedness of the first moment. Corollary 1, on the
other hand, is a result on Ll-convergence under a weaker
moment assumption. - B

Notice the flexibility of Theorem 1 and, specially
Corollary 2. Andrews (1988) did not impose a rate of decay to
zero on the Ll-mixingale numbers (¥y), but instead he imposed
the condition that fm -> 0 as m -> . This contrasts
with many WLLNs in which the constants that index the temporal
dependence, such as ¢(.), p(.), or a(.) mixing numbers must
converge to zero at a particular rate (Andrews, 1988). 1In our
case, Andrews’ requirement regarding the mixingale numbers

’s is taken care of by Corollary 2. This can be seen from
Toeplitz’ Lemma which states that if a sequence of real
numbers (a,:n 2 1) satisfies a, -> a as n => o, then

n .
n~1 = ax => a as n —> o, In this case, take aj, =Y
k=0

-

- and

© [
apply Toeplitz’ Lemma, noting that n~1 Z ay and nl ay

k=0 k=M
converge together.

We remark here that, since ; ay and ; ay are either
both convergent or both divetzgnt, (7) k::n be replaced by
; axy < . However, the condition (7) is preferred because it
T:gds to easy generalization to other conditions such as those
in Andrews (1988).
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4. RELATIONSHIPS WITH PREVIOUS RESULTS

n
The condition lim X c¢j < ©» might be too stringent in
n->w i=1
some situations. For example, suppose ({X;) is. such that
sup ||Xjll; < © and we take ¢; = |X;fl;, i =1,2,.... In this
121 ' :

case, the bound will be too large such that the convergence to
0 is not attained. However, strengthening some of the
conditions in Corollary 2 will ensure L--convergence.

ih the~following theorem, we strengthen the condition on
{Wm: m > 1), that is to say, we specify its form. The theorem
illustrates how our results are related to Andrews’ result.

THEOREM 2. Suppose the sequence (X;,F;} is an Ll-

mixingale such that E sup |Xy| < @. Assume " further that

k21 '

there exists a non-increasing function f{n,k) such that and
for all k < n,

(11) ¥, = f(n,k) ¥,

where for a fixed k, f(n,k) -> c <® as n -> o, Let
ci = Ixily- 1f

(12) VYp => 0 as k -> =,

then as n -> o, n~1 S, converges to 0 in L; and, in
conséquence n~1 Sn ~>p 0Oasn->wo .

Theorem 2 actually illustrates the relationship between
our result with that of Andrews (1988). An example of a
function f(.) defined in Theorem 2 is given below.

n
The condition 1lim X ¢j < ® can also be weakened to
n=>o i=1
n :
lim sup n~1 Z ¢; < © when the second moment exists. This is
n->o i=1
given in the following theorem.

THEOREM 3. Let (X;,F;) be an integrable L2—mixinga1e. If
© ;
sup || Xkl < », and if n% 5 % <w, 0 < § < 1/2, then n~1ls
k21

k=0
converges in L2 to 0 as n-> «. =

n

\
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EXAMPLES

We will show an example of the function f(.) defined in
Theorem 2. We need the following definition of size. This
definition is found in McLeish, 1975a.

DEFINITION 2. A sequence (Y} is of size -p if there
exists a positive sequence {L(n)} such that:

(a) 2, 1/nL(n) < o=,

(b) L(n) - L(n-1) = 0(L(n)/n),

(c) L(n) is eventually nondecreasing,

(@) ¥, = o(1/(n}/2L(n))?P)

: Suppose that (W } is a mixingale number sequence of size
-p. By condltlon (d), there exists a /\, such that ¥n'<

Ao/ (n 172 L(n)) 2P, Therefore, assumlng we have the inequality,
we obtaln by using (b) and (d), v

2p
(13) ¥ 4q = [{n/(n+1))1/2{(L(n)/L(n+1)>] Yy -

By condition (a) the term L(n)/L(n+1) is bounded. Therefore,
the expression in the brackets [.] in (13) is also bounded.

Now, solving (13) recursivély, we obtain

1/2 1/2 H ’p
(14) ¥pyy = [{n /2/(n+1)1/ ){p(n)/L(n+1)}] '

N 2p
[(n/(n+1)}1/2(L(ﬂ\/L(n+1)}]

Iy 2p
X [((nfl)/n)l/z{L(n-l)/L(n))] Yn-1

_ : 2p
[{(n-k)/(n+1)XI/QK(L(n-K)/L(n+1))] Y-k

\ - 2p
[(m/(m+k+1)}1/2(L3m)/L(m+k+1)}] Yo

£(m,k)_¥p,



26

2p
where f(m,k) = [{m/(m+k+1)1/2}{L(m)/L(m+k+1)}] . MNote that
f(m,k) in (14) satisfies the conditions of f(n,k) in Theorem
2. This proves the assertion. -
5. PROOFS

PRCOF OF"EROPOSITIOM 1. We follow McLeish (1975). Write

n
14
Xj = & (Ej4xXj = Bj4x-1%4)
: K==
Then,
(15)
n L)
Sn = E % (Bjyp X§ = Ejex-1 Xi)o
i=]1 k=-o

For fixed M ¢ IY,

° n °°
Sp= = Z (Bjyx X = Ej4k-1 Xi)

i=1 k=M
n -M N

+ = Z (Ej4x Xi = Ej4x-1 X))
121 Ke-o i+k~1 41
n .

+ ,El(Ei+M~1 Xj = Ej-pXi)
1=

o0

k=M

which completes the proof. -
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PROOF OF THEOREM 1. From Proposition 1, we have

(16) max |Sj|
jsn
LY n
€ 2 % (|Bjux X3 = X5 |+ [Xg = Egye-n Xil)

k=M i=1

- n
+ T (|EjgXil + |Bjog-1Xy])

k=M i=1

n
+ % (IBj+m-1 X3l + |Bjom Xi])-

1=1
Therefore, we have
(17) (E max [S4] )
j<n
© n :
< p) pX (ci Yxe1 + Ciwk + cj¥x, + ci¥i4e1)

k=M i=1
n

+ b (Ci \yM + Ci (\yo + ‘yl) + Ci \PM)
i=1

[ /] n
< 6 X Wk + WO + Wl z Ci
k=M i=1

The last inequality holds because the c;’s and Y;’s are
positive constants. -

PROOF OF THEOREM 2. To prove the assertion, we need to choose
an M in Theorem 1, such that with the chosen M,

o0 ¥ n
(18) n-tfe z 'kyto Y2 ¥ cj|2»0 as n => o,
k=M i=1
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By assumption (12), we can choose an M € 1t sufficiently
large, but fixed, such that for a given ¢,

0 -1 0
(19) 6 X “k =6 (= Yk + X Wk) <€, M< 2.
k=M =M k=g

By assumption (11), we can express Y, and ¥, as functions of
Yl' nanely, :

(20) ¥y = £( %0)¥, and ¥, = £(L,1)¥,

X

Substituting - (20) - in (19), «c¢; = |Xjll; and using the
assumption that [|Xjll; € E sup |[Xx| < o, _
k21 ‘
@ n
n"l |6 DY F Yty 2 cj
k= i=1
-1 ©
=n7l f6( T ¥+ B Y) 4 £(RO)Y, + £(L,1)
k=M k=12

x {2 AN J
1=1

o .
< l6( = Y o+ Ez‘i’k) + f(z,O)w2+f(!L,1)\yJ

n
X [n‘l % E sup |Xk|]
i=1 k21
£-1 0 o
6 (2 yp + = ¥g) + f(2,0)\y2+ F(L,1)
k=M k=4

k=1

X [ E sup |Xx]|y J

Since, by assumption (11),Y, -> 0 as %-> ®», the RHS is less
than €’, for sufficiently large 2. And, hence, the RHS goes
to 0 for a given suffiently 1large £ . Therefore, n~1s

. A n
converges in L, to 0, and the assertion follows. -
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PROOF OF THEOREM 3. We follow Andrews (1988). Note that
(21) E(n~1s)2 < E(2 n~2 ; ; X;X5)
i=1 j=1
< 2 n72 .; _; |EX; X4
i=1 j=1
Now,
(22)  |EXjX5| < |EXj(X4 - EyeeXyl + |EX{Ej16X51
= |EXj(Xy = E44gX§) | + |EE§4g(XiE44eX) |
< IxillalXy = EqeeX5l2
+ 1E54+6Xill 21 E54+8X5ll 2
= (Yo + ¥3) Yg410405
+ (Y41 + Yo + wl)w(i-j-s)cicj
Subtituting (22) in (21) with s = [(1-j)/2],
(23) E(n~1s,)?2 '
< 4 n~2 g ;: (Yo +¥1) ¥ (i-3)/21CiC5
i=1 j=1
+2 n2 3 ; ¥2[(i-4)/21CiC5
i=1 j=1
Let cj = [[Xjll;- Since cj < sup |X;ll,, i =1,2,...n,
k>1
_ 2 n i
E(n~1s,)? < sup Xz 4 n™2 2 le(wo +¥) ¥Y[(i-§)/2] .
+ sup "Xkﬂg 2 n~2 g ; y2 [i-3)/2]
k21 i=1 j=1
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2 -1 [n/2]
< sup |X¢|l, 8 n b (Yo +¥) Yu
k21 u=1
2 -1 [n/2] 2
+ sup x|z 4 n Z (Yo+tw) Yy o
k21 u=1

which converges to 0 as n => ©, This completes the proof. -
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